NAM: Normalization-based Attention Module
Liu, Y., Shao, Z., Teng, Y., Hoffmann N. (2021). NAM: Normalization-based Attention Module. ImageNet PPF @ NeurIPS 2021.
Liu, Y., Shao, Z., Teng, Y., Hoffmann N. (2021). NAM: Normalization-based Attention Module. ImageNet PPF @ NeurIPS 2021.
Willmann, A., Stiller, P., Debus, A., Irman, A., Pausch, R., Chang, Y.-Y.,Bussmann, M., Hoffmann, N. (2021). Data-Driven Shadowgraph Simulation of a 3D Object. Simulation with Deep Learning @ ICLR.
Bethke, F., Pausch, R., Stiller, P., Debus, A., Bussmann, M., Hoffmann, N. (2021). Invertible Surrogate Models: Joint Surrogate Modelling and Reconstruction of Laser Wakefield Acceleration by Invertible Neural Networks. Simulation with Deep Learning @ ICLR.
Zhdanov, M., Steinmann, S., Hoffmann N. (2022). Investigating Brain Connectivity with Graph Neural Networks and GNNExplainer. ICPR 2022.
Willmann A.,Cabadag J.C.,Chang Y.-Y.,Pausch R.,Ghaith A.,Debus A.,Irman A., Bussmann M., Schramm U., Hoffmann N. (2022). Learning Electron Bunch Distribution along a FEL Beamline by Normalising Flows. Machine Learning and the Physical Sciences @ NeurIPS 2022.
Zhdanov, M., Randolph, L., Kluge, T., Nakatsutsumi, M., Gutt, C., Ganeva, M., Hoffmann, N. (2022). Amortized Bayesian Inference of GISAXS Data with Normalizing Flows. Machine Learning and the Physical Sciences @ NeurIPS 2022.
Stiller P., Makdani V., Pöschel F. , Richard P., Debus A., Bussmann M., Hoffmann N. (2022). Continual learning autoencoder training for a particle-in-cell simulation via streaming. Machine Learning and the Physical Sciences workshop @ NeurIPS 2022.
Talk at UC San Francisco, Department of Testing, San Francisco, California
Tutorial at UC-Berkeley Institute for Testing Science, Berkeley CA, USA
Talk at London School of Testing, London, UK
Conference proceedings talk at Testing Institute of America 2014 Annual Conference, Los Angeles, CA